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Supersymmetric mechanics with an odd action functional 
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Abstract. We give an odd Lagrangian formulation of models yielding the Poisson-Buttin bracket 
in the graded phase space. Such a genenlization of the usual supersymmeuic mechanics allows 
the introduction of ann (for nextended algebra, n = 2k)  even parameters of deformation of the 
geometry of an nextended super-time space. 

1. Introduction 

Sipersymmetric mechanical systems are typically considered within the framework in which 
the Hamiltonian of the system is an even element of the observable algebra. However, as was 
pointed out in [1,2], there exists another possibility. The algebra of phase space functions 
can be given by means of the Buttin bracket [Z]. In contrast to the Poisson bracket, the 
Buttin bracket is an odd mapping and has shifted grade properties (for a general description 
of such super-Hamiltonian structures see [3 ] ) .  An odd bracket of this kind is also widely 
used in the Hamiltonian BRST formalism and in that context is called an antibracket (for a 
review of the BRST antibracket formalism see 141). Recall that the odd mechanics can be 
considered independently of the antifield BRST formalism [3 ] .  

The first examples of Hamiltonian models realizing an odd bracket mechanics and 
quantization procedure were presented in the series of papers [5-S]. These models were 
defined directly in a graded phase space by means of an odd Hamiltonian, but no Lagrangian 
description has yet been given. 

In the present paper, starting from the configuration space description, we show that 
even and odd models can be treated as two different grade realizations of conventional 
n = + supersymmehy. In the case of odd models, we obtain an n-parameter family of 
such models with an appropriately deformed antisymmetric form on an n-extended super- 
time space. The parity shift mapping plays an important role here [9, IO]. Its role for the 
graded supersymmetric mechanics was observed in [I  I]. 

2. Supersymmetric classical mechanics with an odd action functional 

Let us consider the superfield supersymmetric classical mechanics (cf [ I l l )  (U; {&, Da, a); 
( M .  J, 6); S) of a dimension (NO, N I )  with NO = N I .  Where: 

(a) Y is the complex super-time space, (t. fie) E Y ;  01 = ~ l ,  2, . . . , n (for convenience 
n = Z), where f is commuting and rP, are anticommuting variables. 
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(b) [Qc, D,, a) is the set of generators and covariant derivatives of the n = 2 
supersymmeby algebra, i.e. 

([., .] is a graded Lie bracket and gap ~a non degenerate symmetric metric cf appendix). 
In addition we have the generator R of O(2) rotations, which are automorphisms of this 
superalgebra 

[ R ,  Qul=ce5Qa.  (2) 

Realization of the above operators is conventional: 

Q~ = a, + D, = a, - ivaa R = -i?mcff8a,. (3) 
d 
dt 

a = -  

(c) A graded configuration space M = MO + MI (dim M ,  = N,, s = 0, 1) is endowed 
0 1  

with the graded symmetric metric, i.e. for @ = (@, @) E M we have 

(;,&Cc 11 $ i $ j  ," &.-(-)$&. Cl - ,, &,$, = O  fors#$ .  (4) 

Therefore trajectories in M are described by functions 

0 
@ j ( t .  +) = X j ( t )  = x j ( t )  + i+=xj"(t) + $+*bj(t) (50) 

(5b) 
1 

@j(t ,  +) = yj(t)  = y j ( r )~++cy; ( t )  + 4fi22f;:(r). 

The component functions of the above coordinate superfunctions describe the motion of 

a model in extended configuration superspace of dimension 2"2N. Here @ and @ have 
vectorial index, however, in other types of supersymmetric mechanics the index of the odd 
superfield can be spinorial (for example in the superfield spinning superparticle model [ 121). 

(d) S denotes the action of the supersymmetric system. For an even mechanics it is an 
even functional (in the sense of the Grassmann parity, deg(S0) = 0). We shall generalize 
it here to the case deg(S1) = 1. To this end let us start with the kinetic term of the SO. 
Generally it is of the form 

0 I 

So = a /dtd19~di?, caP(D,$, Do@). (6) 

The configuration space is a direct sum of odd and even sectors therefore D, is understood 
here as Da 8 id,,,, Naturally, the above action is invariant under the supersymmetry 
transformations generated by Qa, a and also under rotations generated by R (the last one 
acts non-trivially on components xi", yp). We neglect here the target space symmetries. 

New possibilities give an odd extension of covariant derivative operators. Namely, 
using the parity shift operator ll [9-11] we can introduce the even derivative 0, @ n, 
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acting on the graded vector superfunction. It is natural to assume that rIz is an identity and 
allow ll to be different for each D,. Therefore in the case of n = 2, matrix realization of 
such a parity shift operator will be simply (generalization to the n = 2k is obvious) 

where qa is an invertible even parameter (qu can be complex). Having such an extension 
we can finally define the odd action functional as follows: 

1 dt d&d& (De@, V s D , @ )  = dt L1 (8) J SI = 4 
where 

0 I 1 0 
nus Dp 4; = c@q;’Dp q$ and n”Dp @; = cu8q8Dg 4i (9) 

This means, in the notation of (5). that 

;I = i / d td&d91  2j%sDaX;DpYj  

where 

(for other notational conventions, see the appendix). 
The form :;p is the deformation of the antisymnietric form cas, different for each sector 

s (s = 0 , l )  of the configuration space. It depends on two parameters (q1,qZ) = q, (Y = 1.2 
(recall that we assume n = 2). Deformed cas is not antisymmetric in general and indicates 
changes in the geometry of super-time space Y. 

The action SI (like SO) is invariant under supersymmetry transformations and rotations. 
However, there is a difference in the behaviour of the Lagrangian L1 in comparison with 
LO. Namely, under infinitesimal rotation it changes by a total time derivative (analogous 
variation of LO vanishes). Explicitly in components this divergence term has the form 

Our discussion up to now has concerned the kinetic te& only. Let us consider a more 
interesting system possessing a potential term as well. 

The so-called graded superfield oscillator (GSO) was introduced in [ l l ]  as a 
supersymmetric system containing the full set of bosonic and fermionic oscillators and 
rotators. Here, we will generalize the GSO to the odd case. First, let us note that deformation 
present in the kinetic term of odd models is strictly connected with the presence of the 
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covariant derivative operators, therefore it will not be present in the potential term. We 
define the action of the odd GSO (OGSO) in the following form: 

S =  d t d ~ z d B 1 ( $ ( D , ~ , n ~ D g D D g ) - o ( ~ , n ~ ) )  s 
+ (-)'w(xifj + ic+&yf + biyj) . (13) 1 

The above action yields the following equations of motion: 

and 

$ T r i  P 3 ". - (-)'wOfi = 0~ 

4 (ite + i ~ )  96; + (-yiocw6yB = o 

T f i  - (-)"my; = 0. 

(154 

( 1 ~  

(1Sd 1 

Eliminating auxiliary components we can finally write these equations in the form: 

4 Tri,.?; + w'x; = 0 ( 1 6 4  

A + (-yiwc,DgxS = o (166) 

1 Tr&y; + 02yi = 0 (174 

i Tr&yaj + (-)'iwc,gyB = 0. (17b) 

Therefore the odd GSO contains the system of bosonic oscillators and rotators (equations 
(16~). (17b)) and the system of fermionic oscillators and rotators (equations (17~). (16b)). 
On the level of the equations of  moticn the deformation can be absorbed to mass of the 
oscillator and rotator. Moreover for q1 = q2 = (iY+l, gap - c.p; c = 0. In this case the 
whole system projects on the subspace (MS. G). Note that all expressions where s enters 
are considered mod 2. For q1 + qz both sectors of the odd GSO model are present. 

S i 1  

s 
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3. Hamiltonian description: the Dirac-Buttin algebra of charges 

The model introduced in section 2 is supersymmchic. Therefore, performing the passage to 
the graded phase space we expect that the system will have constraints. Because of the odd 
character of the Lagrangian, the resulting Hamiltonian will be an odd function. Obviously 
the Legendre hansformation gives a Hamiltonian with the same parity as that of the original 
Lagrangian. Parity of this transformation is the same as the parity of the time parameter. 
In the present models it is fixed to be even. 

Canonical momenta have opposite grade with respect to the gade of the conjugated 
coordinates: 

and 

where degF = degpp + 1; F is an arbitrary coordinate and pp is its momentum. 
Expressions (18b), (19b) and (18c), (19c) yield the primary second-class constraints. The 
last relations allows one to get rid of auxiliary degrees of freedom: bi, h. Non-trivial 
constraints are taken into account in the following definitions: 

I . , S . . S  

G:. p iu  + 1 G” Sqc?y,gj = 0~ (2.W 

G;. p:. - (-)’+ G” SqBwx4j = 0. (20b) 

~~ 

I .  s .. s 

Finally, the Hamiltonian in the reduced phase space is of the form 

L It can be shown that the Poisson-Buttin (PB) bracket for odd system has the following 
form (for reduced form see [21 and also r5-81) 

where deg F, = r and external indices are omitted; A ,  B are the phase space functions. 
The BP bracket is connected with the so-called periplectic form defined on the graded phase 
space (cf [3]). Because of the mixed parity of F and p~ this bracket is an odd mapping, 
i.e. deg((A, B ) I )  = degA + degB + 1. Algebraically, it has the properties of the Buttin 
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bracket [1-3] (cf also,[5,7]). It is the graded bracket with grading factors changed by the 
grade of the bracket itself. Namely, 

(A, E.], = -(-)'A+')(8+1)[B, A)]  ( 2 3 4  

C(-)(A+lHC+l) (A, IB,CJIII = ~ O  ( 2 3 ~  

(A, B C ) ,  = (A, B),C - ( - ) ( A + l ) B ~ [ ~ ,  c), (234 

cyc1 

In particular 1, ) I  is symmetric only when degA = deg B = 0. For the canonical variables 
we obtain that 

(24) 

where deg F' = r and deg p k  = r+  1. In contrast to the even Hamiltonian graded mechanics 
the minus sign is not present here for r = 1. 

Because of the constraints (15) we have to modify the relations (22) to the case of the 
Dirac-Buttin bracket. Namely, the resulting Dirac-Buttin bracket is 

r(r+l)gi - s( IF' ,  P F j h  = (-1 j - 

L 
{A, B ) Y  = [ A ,  E ) ,  + ($Trk)- 

Finally, essential relations for canonical variables have the form: 

(26b) 
*,8  

{ x , t , y b j } ,  = 4-)' (fTr&)gUBh;l. 

Conserved charges for the considered model read, in phase space, as follows: 

I. 

Q4 a - - ixp >; + yp p i  ( 2 7 ~ )  

R,=-(;T 18, ' ) ' , '  G'Jcapxeiybj degR = 1. (27b) 

deg Q = 0 

Together with the Hamiltonian (21) they form a closed Dirac-Buttin algebra with the basic 
relations 

Therefore for each fixed s (connected with the g e o m e ~ c  stmcture Gij in the target space) 
we obtain the Dmc-Buttin algebra anti-realization of n = 2 supersymmetry. This anti- 
realization is parametrized by two even parameters 41, @. Prefix 'anti' means here that the 
grade of the deformed realization of each generator is shifted by one with respect to the 
former grade (cf equation (I)). The multiplication in the above algebra has shifted-grade 
properties. 
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4. Final remarks 

Let us look briefly at the relations between these two realizations of the supersymmekic 
mechanics. Note, that we have conventional supersymmetry algebra in both cases. Formally 
we work within the diamam 

2 A1 where: M denotes the configuration superspace, T M  is the tangent superspace for the even 
system, T,M is the tangent superspace for the odd system, i.e. with the Grassmann odd- 
valued 'scalar' product (, )z = (, n) (here the deformation of the supertime smcture also 
enters). The TFM; r = 0,1, are phase spaces of the even and odd systems, respectively; 
Fr are the Poisson and the Poisson-Buttin algebras of phase space functions for r = 0, 1, 
respectively. The Lagrangian Lo and the q-family of Lagrangians L1 define appropriate 
Legendre transformations FL,,  r = 0 , l .  Since the form of parity shift on T M  is fixed (cf 
definition of L I  in (9)) as well as both Legendre transformations, introducing the mapping 
n:,, we can make the left part of the diagram commutative. It identifies momenta in both 
spaces. In particular, the anti-isomorphism between the algebras of constants of motion in 
F1 and Fo can be realized using the adjoint action with a fixed generating function. For the 
considered model with the kinetic term we have 

(31) {EA, 17 : F, + F: 

where deg EA = 0 and 

Moreover F z  is the algebra of functions of the form fc = f o ( F ,  l l * ( p F ) ) .  

Appendix 
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